
MagicMenu

Olaf Barthel



MagicMenu ii

COLLABORATORS

TITLE :

MagicMenu

ACTION NAME DATE SIGNATURE

WRITTEN BY Olaf Barthel December 31, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



MagicMenu iii

Contents

1 MagicMenu 1

1.1 MagicMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 MagicMenu tooltypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 MagicMenuPrefs tooltypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 dangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 The preferences editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Look and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.8 Keyboard control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 Colour control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.10 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.11 Edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.12 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.13 Keyboard control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.14 Frequently asked questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.15 history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.16 translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.17 authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.18 registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.19 support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



MagicMenu 1 / 23

Chapter 1

MagicMenu

1.1 MagicMenu

MagicMenu 2.21
A utility to enhance the Intuition

pull-down menu system

Written by Martin Korndörfer
and

Olaf ‘Olsen’~Barthel

Artwork created by Mario ’padrino’ Cattaneo

I.
Installation

II.
DANGERS

III.
The preferences editor

IV.
Keyboard control

V.
Frequently asked questions

VI.
History

VII.
Translations

VIII.
Authors & credits

IX.
Registration

X.
Support

1.2 installation

MagicMenu consists of two programs. Drop the "MagicMenu" program ←↩
into the



MagicMenu 2 / 23

"WBStartup" drawer of your system boot partition and put "MagicMenuPrefs"
into the "Prefs" drawer on the same partition. Two versions of the program
are provided. The "68k" versions will run on any Amiga machine, while the
"020" versions will require an Amiga with an 68020 process or better. Take
care, the "020" versions are bound to crash on machines they were not
designed for.

If you do not have "gtlayout.library" installed already, you should copy it
into the "Libs:" drawer. The preferences editor depends upon it.

Both programs can use configuration information as found in the icon
tooltypes:

MagicMenu tooltypes

MagicMenuPrefs tooltypes

1.3 MagicMenu tooltypes

MagicMenu is a commodities tool. This means, it filters user input and reacts
to it. It also sports a well-defined set of icon tooltypes:

CX_PRIORITY=<-128..127>

All commodities tools receive input events through a prioritized queue of
handlers. This means, the higher the CX_PRIORITY value, the sooner a tool
will receive an event.

CX_POPKEY=<hotkey>

You can invoke the MagicMenu preferences editor with a hotkey combination.
The default is "control alt space", which means that you need to hold
down the [Ctrl] and [Alt] key and then press the [Space] key to invoke
the preferences program. For a complete description of the hotkey syntax,
see your AmigaOS manual.

CX_POPUP=<YES or NO>

If you want MagicMenu to open the MagicMenu preferences editor immediately
when it is started, set this tooltype value to "YES". Otherwise, leave it
as "NO".

DONOTWAIT

The Workbench will process this tooltype when MagicMenu is started from the
WBStartup drawer. It tells Workbench not to wait for MagicMenu to exit
before launching the next program it finds in this drawer.

TOOLPRI=<-128..127>

This is another tooltype the Workbench will pay attention to. It defines
the task priority MagicMenu will have assigned when it is launched.

STARTPRI=<-128..127>



MagicMenu 3 / 23

This tooltype defines the order in which MagicMenu will be launched with
the other tools in the WBStartup drawer. The higher this value, the
sooner it will be started.

1.4 MagicMenuPrefs tooltypes

The MagicMenu preferences editor works like every other AmigaOS preferences
editor you have ever used. It supports the following tooltypes:

EDIT

This brings up the preferences editor window, which is the default
action for this program.

SAVE

The current MagicMenu settings will be saved permanently. If you
select a MagicMenu settings file and then double-click on the
preferences editor, it will read the file and save it permanently
to disk.

USE

Reads the currently active MagicMenu settings file and tells
MagicMenu to use these. You can also select a MagicMenu settings
file and then double-click on the preferences editor.

PUBSCREEN=<public screen name>

The name of a public screen the preferences editor window is to
open on. If no screen name is given or if the named screen
cannot be found, the editor window will open on the default
public screen.

CREATEICONS=<YES or NO>

If you wish to save settings files with the preferences editor,
this tooltype controls whether the files will have icons attached
(and thus, will be visible from Workbench) or not.

CX_PRIORITY=<-128..127>

All commodities tools receive input events through a prioritized queue of
handlers. This means, the higher the CX_PRIORITY value, the sooner a tool
will receive an event.

CX_POPKEY=<hotkey>

You can invoke the MagicMenu preferences editor with a hotkey combination.
The default is "control alt space", which means that you need to hold
down the [Ctrl] and [Alt] key and then press the [Space] key to invoke
the preferences program. For a complete description of the hotkey syntax,
see your AmigaOS manual.



MagicMenu 4 / 23

CX_POPUP=<YES or NO>

If you want MagicMenu to open the MagicMenu preferences editor immediately
when it is started, set this tooltype value to "YES". Otherwise, leave it
as "NO".

1.5 dangers

MagicMenu exploits features of the Amiga operating system man was ←↩
not meant

to meddle with. Essentially, this means MagicMenu qualifies as a hack or
kludge. You can quickly get into trouble when using it, while on the other
hand it may work perfectly for you, with no problem whatsoever.

MagicMenu interacts with Intuition, the entity that runs the Amiga user
interface and the pull-down menus. It intercepts normal menu rendering by
looking for mouse or keyboard events that would normally get Intuition to do
menu operations. The normal Intuition menus are replaced by what MagicMenu
has to offer. The catch is that for Intuition menu rendering is something
very special. For example, while the menus are displayed no window will open,
no text on the screen will scroll and no window contents will be updated.
This is because Intuition enters a special state when doing the menus in
which all other display operations are delayed until the users lets go of the
menu button.

Unfortunately, MagicMenu cannot do the same trick, which can lead to
collisions. The machine may appear to lock up, the mouse will stop moving and
you’ll see every sign of a system crash. In such a case Intuition has tried
to get a hold of the resources MagicMenu owns at the moment and is waiting
for MagicMenu to release them. But MagicMenu is unable to release these
resources until Intuition has stopped waiting for them to be released. The
net effect is a classical deadlock.

MagicMenu will eventually back out of the deadlock after a certain amount
of time but the deadlock can be avoided altogether if you configure MagicMenu
to run in non-blocking mode (see

Preferences/Non blocking
for

more information). However, the non-blocking mode has the effect that display
updates by other programs that have windows open on the same screen will not
be halted or delayed. Thus, if you are used to halt text scrolling by holding
down the menu button, it will no longer work in non-blocking mode.

Some programs may interact strangely with the way MagicMenu renders and
builds its menus. If you suspect foul play, hold down the [Ctrl] key or one
of the [Alt] keys while you hold down the menu button: MagicMenu will get out
of the way and let Intuition handle the pull-down menu business as usual.

1.6 The preferences editor

The preferences editor window consists of three pages of ←↩
configuration

information:



MagicMenu 5 / 23

Look and usage

Keyboard control

Colour control
Note: this page is available only under Kickstart 3.x and if ←↩

the screen
the preferences editor window opens on has enough colour slots
available to display the menu sample image (64 colours are the
minimum requirements).

In addition to the configuration pages, there is set of pull-down menus
to choose from:

Project

Edit

Settings

1.7 Look and usage

Pull-down menu:

Usage

Three options are available:

- Intuition compatible

The menus will appear when you hold down the menu button and
will go away when you let go of the button.

- Sticky mouse button

The menus will appear when you hold down the menu button and
will stay when you let go of the button. To make them go away
press the menu button again.

- Smart select

The menus will appear when you hold down the menu button and
will stay when you let go of the button. To pick menu items,
use the select button (left mouse button). To make the menus
go away press the menu button again.

Look

Three options are available:

- Standard

Menus are rendered in the familiar flat black/white style
Intuition uses.



MagicMenu 6 / 23

- Old 3D

This menu rendering style is similar to the 3D button
style the operating system uses. It also has custom
imagery for the checkmark and the Amiga key.

- Multicolour 3D

The "gaudy" style popularized by MagicWB. This has
custom imagery for the seperator bars, the checkmark
and the Amiga key. It makes use of a special set of
configurable user interface colours.

Pop-Up menu:

Usage

Three options are available:

- Intuition compatible

The menus will appear when you hold down the menu button and
will go away when you let go of the button.

- Sticky mouse button

The menus will appear when you hold down the menu button and
will stay when you let go of the button. To make them go away
press the menu button again.

- Smart select

The menus will appear when you hold down the menu button and
will stay when you let go of the button. To pick menu items,
use the select button (left mouse button). To make the menus
go away press the menu button again.

Look

Three options are available:

- Standard

Menus are rendered in the familiar flat black/white style
Intuition uses.

- Old 3D

This menu rendering style is similar to the 3D button
style the operating system uses. It also has custom
imagery for the checkmark and the Amiga key.

- Multicolour 3D

The "gaudy" style popularized by MagicWB. This has
custom imagery for the seperator bars, the checkmark



MagicMenu 7 / 23

and the Amiga key. It makes use of a special set of
configurable user interface colours.

Centre boxes

If this switch is enabled, MagicMenu will try to centre the
menu title, menu and submenu boxes right below the mouse
pointer.

General:

Type

Three options are available:

- Pull-down menu only

MagicMenu will stick to the original style of rendering
menus from the top of the screen downwards. The menus
may look different, but the placement of the items will
be just like Intuition would choose it.

- Pop-up menu only

Every time you invoke the menus, they will pop up right
below the mouse pointer.

- Mouse pointer position dependent

If the mouse pointer is in the screen title bar,
MagicMenu will display a pull-down menu. If the mouse
pointer is in a different position, it will display
pop-up menus instead.

Mark submenus

Menus that have submenus attached will receive a marker at the right
hand side of the menu box (unless the items are already marked as
such).

Double borders

This affects the menu rendering style in the old and multicolour
3D modes: the rendering style of the menu borders will be changed
and the item highlighting style will be reversed.

Non blocking

This switch toggles between two fundamentally different modes
of MagicMenu operation:

- If disabled, menu rendering takes place on a screen only
MagicMenu has access to. Windows will not open, text will
not scroll, windows will not be updated. This is most
similar to the way standard Intuition menus are rendered.
But that’s not the whole story. The big difference is that
Intuition does not really know that MagicMenu has taken



MagicMenu 8 / 23

control of the screen. This may cause Intuition to fall
into a trap when it badly wants to take control of the
screen as well. In that case the Amiga will appear to
lock up, the mouse will cease moving and the whole thing
will have the uncanny appearance of a machine that has not
only crashed, but joined the choir invisible. This can
be a little unnerving at times, especially if the machine
does not only appear to be crashed, but really has joined
its maker. You’ll know for sure when MagicMenu backs out of
this deadlock after a few seconds. If it doesn’t, you’ll
have to reboot the machine. So there.

Another effect this mode has is that all menu rendering
will go straight to the screen bitmap. So if a menu
layout is a little "off", it will happily trash innocent
memory when it is rendered.

Think again, if you want trouble, this is the right
setting for you.

- If this switch is enabled, display updates will not be
blocked until the menu closes. This has several advantages
over the blocking mode:

· Intuition can still take control of the screen when it
wants to. There is close to no chance at all for Intuition
to lock up in this mode.

·~Menu rendering is safe. Even weird, exotic and broken
menu item layouts will work without trashing memory.

The big disadvantage of this mode is that it does not
block display updates.

Menus open delayed

Normally, menus and submenus open as soon as the mouse pointer
moves across them. This can slow things down with complex menus.
If you choose to have menus opening delayed, you will have to
stop the mouse from moving for a tick before the menus will
eventually unfold.

Draw frames around menu items

In 3D mode, the single menu entries are surrounded by a recessed
3D frame once they become "active". This can make the text a little
hard to read. If you do not want the frames to appear, you can turn
them off with this switch.

Cast drop shadows

You can tell MagicMenu to draw drop shadows below the menus it displays
if you enable this switch. Please note that the shadows will appear only
in 3D mode.



MagicMenu 9 / 23

1.8 Keyboard control

This page holds the controls for the keyboard control option, which is what
you get when you press a special key combination or [Right Amiga]+[Right
Alt]. The menus will open, for you to select an item with the cursor keys.

Keyboard control enabled

This switch enables the keyboard control mode.

Move mouse pointer to menu bar

While the keyboard control mode is in effect, the mouse pointer
will be repositioned at the lower right corner of the screen
title bar.

Activate with [Right Amiga]+[Right Alt]

This switch enables the easiest keyboard shortcut. Whenever you
use the standard Intuition mouse button "emulation" MagicMenu
will take over and go into keyboard control mode.

Keyboard shortcut

This is another shortcut to get MagicMenu into keyboard control
mode. The default key combination is "ramiga space", which means
that you will have to hold down the [Right Amiga] key and then
press the [Space] key to get into keyboard control mode.

1.9 Colour control

Note: this page is available only under Kickstart 3.x and if the screen
the preferences editor window opens on has enough colour slots
available to display the menu sample image (64 colours are the
minimum requirements).

On this page you can configure the colours MagicMenu will use when rendering
the multicolour 3D look menus.

On the left hand side of the window you can see a menu sample with a
button below it. To select a menu colour to edit, either pick it with
this button or click the mouse inside the menu sample image (the editor
will then use the colour of the pixel you have clicked on).

On the right hand side of the window you find will a vertical slider, a
colour wheel and three Red/Green/Blue or Hue/Saturation/Brightness
sliders below it. This is where you change the colour you have
selected.

Colour matching precision

When picking the colours to use for menu rendering from the set available
to a screen MagicMenu may not get exactly the colours it was asking for
but whatever the operating system can provide and comes close to what



MagicMenu 10 / 23

was requested. How much error MagicMenu will tolerate can be controlled
with this slider, which can be set to four positions: "Exact" is the most
precise (it will accept no error) and "GUI" is the least precise.

Prefer screen colours

Normally, MagicMenu will use the colours you have selected above when
choosing how the menus should look like. But you can also have MagicMenu
use the current user interface colours of the screen instead. To do so,
enable this switch.

1.10 Project

Open...

This where you select a settings file to load into the editor.

Save as...

With this menu item you can store the currently loaded settings
in a separate file.

About...

Displays information about the authors and the program.

Quit

This terminates the program.

1.11 Edit

Reset to defaults

This will reset the current program settings to "factory defaults".

Last saved

The editor will try to retrieve the last saved settings file.
If this is not possible, the current settings will be left untouched.

Restore

This will restore the settings that were in effect when the editor
was started.

1.12 Settings



MagicMenu 11 / 23

Create icons?

This menu controls whether settings files saved with this editor
will have icons attached (and thus, will be visible from Workbench)
or not.

Slider color model

The sliders below the colour wheel on the
Colour control
page can

operate either in Red/Green/Blue mode or in Hue/Saturation/Brightness
mode. This is where you choose which mode to use.

1.13 Keyboard control

Menus are normally entirely mouse-driven, but there are few things you can do
by keyboard:

Activate the menu

You can activate the menu and bring MagicMenu into keyboard control mode
by holding down a special combination of keys. The default key
combinations are [Right Amiga]+[Space] and [Right Amiga]+[Right Alt].
The menu will open and allow you to select the menu item you want with
the cursor keys. Press [Return] to select an item or to open a submenu.
Press [Esc] to return to the previous menu hierarchy or to close the
menu altogether.

Use the normal Intuition menus

You can tell MagicMenu to get out of the way and let Intuition take care
of the menus by holding down either [Alt] or [Ctrl] key when you
press the menu button.

Change the look of the menus

While the menu is active, press [Ctrl] to toggle between 3D mode
and the flat standard mode.

1.14 Frequently asked questions

MagicMenu and the preferences editor may not always do what you expect them
to. Here is a short list of such situations and an explanation of what has
happened:

I cannot configure the multicolour menu colours
The preferences program needs at least 24 colours to display the settings
page that controls the multicolour menu. As the operating system will always
allocate 11 colours for itself, this means you will need to run the
preferences program on a screen with at least 64 colours available.



MagicMenu 12 / 23

The multicolour menu never shows up, I always get the old 3D look menu
For the multicolour menu to work, MagicMenu needs to allocate the colours
that make up its display from the set the screen has to offer it is to open
on. Not all screens allow for this to work, as they may not have unallocated
pens to work with or a colour palette which already has the correct colours
in the right places. In these cases MagicMenu will fail to get the colours it
needs and step back to the old style 3D menu. MagicMenu will also refuse to
use the multicolour menu if the screen to use is a low resolution screen.

Sometimes I don’t get any menu to show up at all
MagicMenu can run out of memory trying to display the menu and it can also
fail to display a menu due to not enough room available on the screen. In
such cases MagicMenu will have stopped building the menu for display before
it has a chance to back out and hand over the job to Intuition. Sorry, that’s
all it can do then.

It’s also possible that MagicMenu backs out of displaying a menu in order
to avoid a fatal system deadlock. This may happen so quickly you won’t even
notice that the menus came up after all.

In both situations, nothing should be keeping you from retrying to bring
up the menus again. It should eventually work.

The menu changes the screen colours when it appears
Some applications open screens which allow other software to allocate colours
from the palette. But not all these applications seem to know that some of
these colours may be allocated and changed by software like MagicMenu. The
MultiView Workbench utility is such an application. MagicMenu will end up
changing the screen colour palette since the screen parameters permit this.
Other applications may make the same mistake. The only way to avoid this is
to put MagicMenu into the old 3D colour look.

Images and the text frames overlap the menu item text
The program to create the menus also determines how they are placed. The
items need not be placed vertically, below one another, but may be placed in
any order there is. MagicMenu cannot just choose to move the items around to
make room without running the risk of covering other items and really
screwing things up. Thus, the text frames can be only as large as the menu
item sizes permit.

MagicMenu conflicts with another utility that maps a certain feature to
the menu button
Provided that the "other" utility is a commodities tool just like MagicMenu
you can use the CX_PRIORITY=<number> tool type to select the order in which
input events are processed. If you want MagicMenu to take care of processing
the menu button, select a lower priority, e.g. make "CX_PRIORITY=-1".

Menu operations become terribly sluggish on 15/16/24 bit screens
Well? That’s supposed to happen. You might be able to cut the time by turning
off the Non blocking option.

MagicMenu fails with "Error initializing system patches".
There are three reasons why MagicMenu can fail with this error:

- It ran out of memory when preparing to install the patches

- MagicMenu is already running on that machine (unlikely; execution
would have taken an entirely different path as this condition is



MagicMenu 13 / 23

detected a lot earlier during program startup).

- You had an older MagicMenu version running on your machine before
you tried to start the new version.

The last reason is the most likely. Unless you do something
very strange in your Workbench startup procedure the problem should
go away after replacing the old version with the new one and
rebooting your machine.

The menus don’t show up at all, the Amiga just freezes and
crashes when the right mouse button is pressed.
Take care if you have several utilities running that plaster the
operating system with patches. For some of the patches the order
in which they are installed matters greatly. Whether MagicMenu
is the first program to install its patches or the last one can
make the decisive difference between a crash and a working system.

(to be continued)

1.15 history

MagicMenu versions 0.01 through 2.3 were developed by Martin Korndörfer. With
V2.4 development passed into the hands of Olaf ‘Olsen’ Barthel.

(Most recent change comes last)

MagicMenu 2.4 (beta)
====================

- Improved overall stability under CyberGraphX; the menu rendering code was
actually peeking Screen->BitMap instead of Screen->RastPort.BitMap, which
among other things could screw up rendering in deep display modes. Menu
rendering now works consistently in display depths beyond 8 bit.

- Removed references to SetABPenDrMd() where they were in the wrong place.

- The code that sends the IntuiMessage should be less timing critical and
simpler now. It fires off the message and starts to wait for a response
if necessary rather than allocating timer requests, message ports, etc.
on the spot and then jumping into action.

- Removed the routine that complains about timed out IntuiMessages. It’s
nice to know that something went wrong, but not that helpful if you
cannot do anything about it.

- Since IntuiMessage processing works differently now, MagicMenu now checks
for pending, unreplied messages.

- The routine that displays the menu and handles the IDCMP_MENUVERIFY
case should be better protected against Intuition state changes and
stale pointers. There is still a catch in that the Window to receive
the menu event may close or dispose of its menu strip before the
event arrives. But actually, Intuition protects itself against
such eventualities, anyway.



MagicMenu 14 / 23

- For a Window without a UserPort, MagicMenu could lose memory. This
has been fixed.

- When an IDCMP_MENUVERIFY message times out, the window to cancel
it now properly receives its IDCMP_MOUSEBUTTONS/MENUUP and
IDCMP_MENUPICK/MENUNULL messages (as per the RKMs). When menu
rendering is finished the other inactive IDCMP_MENUVERIFY windows
on the screen now receive the proper IDCMP_MOUSEBUTTONS/MENUUP
messages.

- Changed the way BOOPSI images in menus are handled. MagicMenu no longer
tries to remap them as if they were BitMap images. Right now it turns
them into BitMap images and then remaps them.

- Redid the image remapping code. It no longer fiddles with the raw BitMap
data but uses the Blitter.

- Added a patch for ObtainGIRPort() which should make all the SafeGIRPort
patches redundant that existed just in support of MagicMenu. The patch
checks if the screen it should work upon is currently locked by
MagicMenu. If so, ObtainGIRPort() will return NULL. This is a little
dangerous since some built-in Intuition classes do not protect themselves
against ObtainGIRPort() returning NULL. I can’t make the patch tell
Intuition to wait until the screen is ready again either, as this would
eventually deadlock Intuition.

- Changed the new 3D look text highlight colour to be more consistent with
the way gadget text highlighting works.

- MagicMenu no longer detaches from the Shell it was started from. If
you need such a feature, use "run >nil: MagicMenu".

- MagicMenu now works with Final Writer. Final Writer calls
Clear/ResetMenuStrip whilst in MENUVERIFY state. Previously,
MagicMenu did not allow this to happen, causing the verify message
to time out.

- The phony IntuiMessages are now ExtIntuiMessages with a NULL tablet
data pointer and proper time stamp information.

MagicMenu 2.5 (beta)
====================

- The ObtainGIRPort() patch now handles the NULL parameter case
gracefully. Some BOOPSI gadget dispatchers actually end up invoking
the draw method in the OM_NEW case with the GInfo pointer not
yet initialized.

MagicMenu 2.6 (beta)
====================

- The new 3D colour mode could screw up the screen colour palette.
The code did not check for pen allocation failures and, since the
pen variables were unsigned, the deallocation code would end up



MagicMenu 15 / 23

freeing the same pen over and over again.

- Changed the commodities filter setup code. All the initializations
are now done at program startup time. MagicMenu enables the filter
later instead of building the filter when the menu comes up.

- Changed the way bevel boxes are rendered. Instead of calling
Move..Draw..Draw over and over again it now uses RectFill()
where possible. For vertical and horizontal lines this is
actually faster than calling Move/Draw.

- Made small visual changes to the menu box and title bar rendering
in new 3D look mode.

- With the non-blocking option enabled, the new 3D look menus now
sport drop shadows.

- In non-blocking mode MagicMenu no longer uses SuperBitMap windows.

- Removed the "demo" menu from the prefs program.

- Integrated Mario’s new imagery, including the new colour map
that goes with it.

MagicMenu 2.7 (beta)
====================

- The drop shadows no longer cause windows to be moved away from
the screen right and bottom edges.

- Disabled menus, items and subitems are no longer rendered with
a frame in new 3D mode.

- The drop shadows were only transparent with CyberGraphX.
I added another patch to allow this for any Amiga (and which
magically also boosts layer creation speed).

- One WaitBlit() was missing in the remapped image cleanup code.

- Removed the "clipping" option. It is now enabled by default in
order to avoid big trouble on the way.

- If MagicMenu cannot reuse the patch table installed by an older
MagicMenu version that was removed from memory just before the
new one was run, it now complains and exits without crashing.

- I tried to make MagicMenu safer by reducing the rendering options
to two alternatives only: you either select non-blocking or you
don’t. Both options imply clipped drawing operations, making it
more difficult to trash memory on the way. The "direct draw"
option is implicitely enabled for non-blocking mode and
implicitely disabled for blocking mode. All this will slow down
menu operations a bit, but better a little slower than a little
sooner to crash.

- No longer fakes ClipRects and uses sleight-of-hand tricks to get



MagicMenu 16 / 23

away with it. Instead of calling SwapBitsRastPortClipRect()
it now uses a much simpler technique to exchange the on-screen
BitMap data and the menu imagery. This technique neither has
nor requires the side-effects SwapBitsRastPortClipRect() has.

- Removed the CyberGraphX chunky option; it is now enabled all
the time.

- New and improved colour remapping code. Much faster than the
old blitter based stuff.

- All new preferences program. The prefs editor goes into
SYS:Prefs. The new configuration files go into ENVARC:.
Note that the new configuration files are not compatible
with the old ones.

- Prefs program and main program now support localization.
No catalogs are available yet, sorry.

- Non-blocking operation is now the default mode since it
is less likely to trash memory, freeze the machine or
crash it.

MagicMenu 2.8 (beta)
====================

- Added two more patches for WindowToBack() and
MoveWindowInFrontOf().

- The prefs program should now consistently find the current
preferences settings, even if MagicMenu is not running.

- Removed the ghosted text colour options. These colours are
now connected to the background colour.

- The prefs program now has a proper version string.

- The keyboard control hotkey combination can be changed at
run-time now.

- Resetting the preferences to defaults now properly updates
the display and the colours.

- The layer patch was using the wrong rectangle offsets,
causing superbitmap windows to screw up.

- The prefs program and the main program now both have
new default minimum stack size limits. For the prefs
program it’s 10K and 8K for the main program.

- The menu image remapping routines show now treat images
properly which make use of the PlanePick/PlaneOnOff combo.

- The main program will now find the prefs program when
it should do. Previously, it would only start the prefs
program if the main program was run from Shell.



MagicMenu 17 / 23

- The colour remapping now also takes place in selected state
images. The same colour remapping rules are applied for the
highlight colour that are used for the normal background
colour.

- Added tablet input event processing. So far only one
tablet input device is reported to work properly. If there
are more, I would like to know :)

- Rewrote the central menu event processing loop. MagicMenu
should now snap out of an Intuition deadlock much faster
than before. I also removed the global menu timeout,
which is now redundant.

- The menus no longer pop out of multicolour style back
into old 3D style without warning.

- Starting the main program twice now brings up the
prefs editor, just like with any other commodities tool.

- Made the drop shadow a little smaller (4x4 instead of 6x6).

- Fixed two fatal bugs in the bitmap initialization code.

- Added two more patches, this time for OffMenu() and OnMenu().

- MagicMenu now supports menu lending. For this to work, I had
to remove the "screen with the active menu pops to front"
feature. This screen depth arrangement also got into trouble
with child screens, which would always get popped to the
background.

- The prefs program now sports a "Test" button. If the main
program is not yet running when you hit this button, the
prefs program will try to launch it.

MagicMenu 2.9 (beta)
====================

- Moved the default imagery back into chip RAM.

- When in keyboard control mode, [Shift]+[Esc] will abort
the entire menu operation, no matter which menu hierarchy
you are in.

- The 3D multicolour mode now requires that the menu font is
at least nine pixels tall. If it is smaller, you will get
the old 3D mode.

- Reworked the menu imagery and made sure that the MX and
checkmark images match in size.

- Multicolour ghosted text no longer gets rendered over and
over again when moving the mouse across it.



MagicMenu 18 / 23

- When running out of pens for the gradient fill slider
the prefs editor should now back out gracefully rather than
end up trying to load colour register -1 with greyscale
data. This could have been the reason for the inexplicable
prefs editor crashes.

MagicMenu 2.10 (beta)
=====================

- Default prefs project icon images now come from ENV:sys/def_pref.

- The multicolour 3D look mode no longer requires a font of a least
nine pixels. Now eight pixels will do (and don’t you complain if the
imagery is taller than the menu font).

- The menu image remapping code should now be much smarter for images
that use the PlanePick/PlaneOnOff option.

- Removed the "Remove" option from the prefs program.

- The prefs editor could copy too many colours when updating the
the program settings.

- Added a "precision" slider to the prefs program. With this slider
you can select how much error the colour allocation routine will
tolerate when selecting the colours for the multicolour menu.

- Rewrote all the colour management routines to be as careful as
possible when releasing the allocated pens. It looks as if not
all system configurations will treat pen #-1 as a no-op.

MagicMenu 2.11 (beta)
=====================

- The preferences editor now opens a custom screen with 32 colours
if it cannot get that many from the requested public screen.

- When MagicMenu has taken control of the menus, window depth
arrangement calls are no longer ignored, but delayed until
the menu closes. Actually, I would have to add a whole lot
more patches to make operation halfway safe, but for now
I’m just plastering patches onto routines which are somewhat
likely to get triggered while the menus are up.

MagicMenu 2.12 (beta)
=====================

- The window depth arrangement patches were not installed correctly,
causing them to do nothing in most cases.

- In non-blocking mode and when running under Kickstart 2.04 you
would still get the shadow borders. As the drop shadows do not
work under V37 this was not really sensible.



MagicMenu 19 / 23

- Added Mario’s new 4 colour images. Note that you will get these
only with high resolution screens and fonts >= 11 points. I also
changed the old 3D look ghosting style.

MagicMenu 2.13 (beta)
=====================

- Added a new option to the prefs program. If "Prefer screen colours"
is enabled, MagicMenu will make up the menu colours from the screen
user interface colours rather than using the colours you selected
from the palette.

- Updated the WindowToFront/WindowToBack patches to delay window
operations on the screen the MagicMenu menus are active on.

- Added more patches to SetWindowTitles and RefreshWindowFrame.
I should also patch RefreshGList, RefreshGadget, NewModifyProp,
ModifyProp, and about seven other routines but I guess I’d
rather stop here. All these routines can cause deadlocks which
MagicMenu will back out of safely. This can be a little annoying,
but you can still change the MagicMenu operating mode for
normal operation.

- The keyboard control commands now consistenly work when they are
enabled and go out of the way when the are disabled.

- Changed the settings file format, this time hopefully for the last
time.

- Added a new option to have menus open slightly delayed, or put
another way, when you have stopped moving the mouse.

- Added another new option to turn off the frames drawn around the
active menu item.

MagicMenu 2.14 (beta)
=====================

- Corrected the placement of the Command images in menu items and
subitems.

- For the "old look" menus the separator bars now render in the
correct colour.

- The old 3D look menu borders are now just one pixel thick,
regardless of the display mode used.

- Changed the preferences data exchange interface between the
prefs editor and the main program. Now the system should no
longer crash if you try to change the settings of the new
program with an old prefs editor.

- Drop shadows are now restricted to pop-up menus.

- Some menus will open faster now in non-blocking mode, as they



MagicMenu 20 / 23

will be "promoted" to simple refresh windows if possible.

- Some of the patches MagicMenu installs to protect itself are
no longer active in non-blocking mode. This will help Workbench
and other applications which would otherwise get caught in
their display update work.

- Changed the alignment rules for the checkmark, Amiga key and
submenu arrow images to match those Intuition uses (or would
use if it could).

- With "mark submenus" disabled, MagicMenu would cease to render
submenu indicators in multicolour 3D mode. It now works again
as it should.

MagicMenu 2.15
==============

- An invalid hotkey specification no longer keeps the main program
from functioning. It will complain and the feature connected with
the hotkey will be unavailable, but the program will continue
to run.

- Changed the default colours for the preferences editor fallback
screen.

- Added more patches for screen depth arrangement, opening
and closing.

- Added Mario’s new artwork.

MagicMenu 2.16 (internal)
=========================

- The size of the menu bar is now taken from the Screen data
structure rather than made up from the font height.

MagicMenu 2.17 (internal)
=========================

- The layers.library patches now jump into action only if the
non-blocking mode and the drop shadows are enabled.

MagicMenu 2.18
==============

- Removed all the layers.library patch code. The drop shadows are
now rendered using a much more robust technique that does not
require any black magic at all. As such, it now also works
under Kickstart 2.04 and is no longer restricted to non-blocking
mode (yes kids, that’s what you always wanted).



MagicMenu 21 / 23

MagicMenu 2.19
==============

- The changes in 2.18 introduced bugs into the menu refresh code.
This is what I had to fix in this version.

MagicMenu 2.20
==============

- I got bitten by SetABPenDrMd() again. Darn. Now MagicMenu can
cast drop shadows under Kickstart 2.04 as it should.

MagicMenu 2.21
==============

- More fixes to keep WSpeed alive [Frank Mariak].

1.16 translations

Very early during the big MagicMenu rework Ole Friis, coordinator of the
Amiga Translators Organization, approached me and offered to help in getting
the program text translated. In the "catalogs" drawer you will find the
result of the collaboration. I am deeply indebted to all the people who spent
their time translating the program text:

Czech:
Translator: Vit Sindlar, xsindl00@fik.dcse.fee.vutbr.cz
Proofreader: -

Danish:
Translator: Flemming Steffensen, fsteff@dannug.dk
Proofreader: Ole Friis, ole_f@post3.tele.dk

Dutch:
Translator: Leon Woestenberg
Proofreader: -

Finnish:
Translator: Marko Honkanen, marko.honkanen@mail.suomi.net
Proofreader: Ville Pispa, brainvpp@compost.fipnet.fi

French:
Translator: Jérôme Chesnot, jchesnot@pratique.fr
Proofreader: Vincent Oneto, voneto@instn.saclay.cea.fr

Greek:
Translator: Pantelis Kopelias, leestar@acropolis.net
Proofreader: Manos Konstantiniadis, konem@acropolis.net

Italian:
Translator: Francesco Mancuso (mcfrank@mediatel.it)
Proofreader: Vincenzo Gervasi (gervasi@di.unipi.it)



MagicMenu 22 / 23

Polish:
Translator: Konrad Dubiel, konrad@inet.com.pl
Proofreader: Marcin Orîowski, carlos@inet.com.pl

Spanish:
Translator: Juan Antonio Ramirez, goliath@nether.net
Proofreader: Arturo Roa, aroa@redestb.es

Swedish:
Translator: Thomas Andersson, steiner@kd.qd.se
Proofreader: Magnus Holmgren, cmh@lls.se

1.17 authors

Martin Korndörfer wrote the original MagicMenu program. He is no longer
involved in the development of the program.

The 3D multicolour menu artwork and design were created by Mario ’padrino’ ←↩
Cattaneo.

It was him who brought MagicMenu back to life after development had come to
a standstill with the 1.29 version.

This documentation, the preferences editor and the development work
following MagicMenu 2.3 were done by Olaf ‘Olsen’ Barthel.

1.18 registration

The original MagicMenu used to be freeware, you would use it and were not
expected to do something in return for using it. This eventually changed
with MagicMenu 2.13. We decided that as a MagicMenu user you should be
encouraged to make a contribution. There are no usage restrictions,
unnerving reminders in this program that force you to register with us,
nor is there a special program version available you would receive upon
registering. If you decide to make a contribution you will encourage us
to continue development and to make enhancements to the program.

It’s up to you to decide what you want to contribute and whom you
want to send it to:

Martin Korndörfer created the original MagicMenu and developed all
versions up to and including V2.3:

Martin Korndörfer
Pommernstraße 15
D-86916 Kaufering, Germany

Mario ’padrino’ Cattaneo is responsible for the artwork used in the program
since V2.0:

Mario Cattaneo
Paul-Marien-Straße 6
66111 Saarbrücken, Germany



MagicMenu 23 / 23

Olaf Barthel picked up development with V2.4, he is responsible for all
the changes, enhancements, bug fixes and new bugs in this version:

Olaf Barthel
Brabeckstraße 35
30559 Hannover, Germany

Any contribution makes sense, large or small.

1.19 support

You can find the most current version of MagicMenu either on Aminet or
on the official home page, as maintained by Mario ’padrino’ Cattaneo:

http://fsinfo.cs.uni-sb.de/~cattaneo/magicmenu/

For feature requests or bug reports please contact <olsen@sourcery.han.de>.


	MagicMenu
	MagicMenu
	installation
	MagicMenu tooltypes
	MagicMenuPrefs tooltypes
	dangers
	The preferences editor
	Look and usage
	Keyboard control
	Colour control
	Project
	Edit
	Settings
	Keyboard control
	Frequently asked questions
	history
	translations
	authors
	registration
	support


